Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
نویسندگان
چکیده
A thin layer of polydimethylsiloxane (PDMS) prepolymer, which is coated on a glass slide, is transferred onto the embossed area surfaces of a patterned substrate. This coated substrate is brought into contact with a flat plate, and the two structures are permanently bonded to form a sealed fluidic system by thermocuring (60 degrees C for 30 min) the prepolymer. The PDMS exists only at the contact area of the two surfaces with a negligible portion exposed to the microfluidic channel. This method is demonstrated by bonding microfluidic channels of two representative soft materials (PDMS substrate on a PDMS plate), and two representative hard materials (glass substrate on a glass plate). The effects of the adhesive layer on the electroosmotic flow (EOF) in glass channels are calculated and compared with the experimental results of a CE separation. For a channel with a size of approximately 10 to 500 microm, a approximately 200-500 nm thick adhesive layer creates a bond without voids or excess material and has little effect on the EOF rate. The major advantages of this bonding method are its generality and its ease of use.
منابع مشابه
Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices
This paper outlines a straightforward, fast, and low-cost method to fabricate polydimethylsiloxane (PDMS) chips. Termed sandwich bonding (SWB), this method requires only a laboratory oven. Initially, SWB relies on the reversible bonding of a coverslip over PDMS channels. The coverslip is smaller than the substrate, leaving a border around the substrate exposed. Subsequently, a liquid composed o...
متن کاملFree-standing SU-8 microfluidic chips by adhesive bonding and release etching
Free-standing SU-8 chips with enclosed microchannels and high density of fluidic inlets have been made in a three-layer process which involves SU-8 to SU-8 adhesive bonding and sacrificial etching. With this process we can fabricate microchannels with depths ranging from 10 to 500 m, channel widths from 10 to 2000 m and lengths up to 6 cm. The process is optimized with respect to SU-8 glass tra...
متن کاملPMMA Solution Assisted Room Temperature Bonding for PMMA–PC Hybrid Devices
Recently, thermoplastic polymers have become popular materials for microfluidic chips due to their easy fabrication and low cost. A polymer based microfluidic device can be formed in various fabrication techniques such as laser machining, injection molding, and hot embossing. A new bonding process presented in this paper uses a 2.5% (w/w) polymethyl methacrylate (PMMA) solution as an adhesive l...
متن کاملLow-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive.
In the fields of MicroElectroMechanical Systems (MEMS) and Lab On a Chip (LOC), a device is often fabricated using diverse substrates which are processed separately and finally assembled together using a bonding process to yield the final device. Here we describe and demonstrate a novel straightforward, rapid and low-temperature bonding technique for the assembly of complete microfluidic device...
متن کاملPDMS-glass bonding using grafted polymeric adhesive--alternative process flow for compatibility with patterned biological molecules.
We report a novel modification of silicone elastomer polydimethylsiloxane (PDMS) with a polymer graft that allows interfacial bonding between an elastomer and glass substrate to be performed without exposure of the substrate to harsh treatment conditions, such as oxygen plasma. Organic molecules can thus be patterned within microfluidic channels and still remain functional post-bonding. In addi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 5 12 شماره
صفحات -
تاریخ انتشار 2005